Magnetic activity in contact binaries

Bartłomiej Dębski

Astronomical Observatory of the Jagiellonian University Krakow, Poland

Contact binaries: LC & data source

q = 0.20 f = 30.0% phase = .75

Light curve deformation: the O'Connell Effect

Phenomenological classification of the O'Connell Effect

Signal of transition between spots

Cycles of activity

Stable, non-changing O'Connell Effect

Regular variations

Random variations

Separation of the brightness maxima

Separation of the brightness maxima

Separation of the brightness maxima

Simulated evolution of the maxima separation under the migration of a different kinds of star spots

KIC 6118779 – contact binary with a migrating polar spot

Measurement of the parameters variation magnitude

Measurement of the variation magnitude - statistical study

Measurement of the variation magnitude - statistical study

maxima separation IQR [phase]

The hidden variability

- Maxima separation evolution can serve as a signature of an activity not visible in the O'Connell Effect, such as:
 - Stationary, non-migrating, evolving <u>polar spot</u> (Candidates found, e.g. KIC 5535061)
 - No O`Connell Effect

- Small changes in the maxima separation
- Simultaneous changes in the maxima height
- (Thermal) pulsations of the <u>binary neck</u> (Candidates found, e.g. KIC 5376552)
 - No O`Connell Effect
 - Considerable changes in the maxima separation
 - Large variation of the primary minimum depth
- Global temperature changes of one of the binary components
 - Changes in the maxima separation
 - Changes in the minima depth
 - No changes in the O`Connell Effect

Typical timescale of the activity

Typical timescale of the activity

Typical timescale of the activity

Summary

- The O'Connell Effect serves as a basic signature of a star spot presence, e.g.:
 - Stationary, non-migrating spots
 - Various cases of migrating spots
- Maxima separation can be used for detecting the activity `hidden' from the O'Connell Effect, such as:
 - Stationary (evolving) <u>polar spots</u>
 - Pulsations of the <u>binary neck</u>
 - Global temperature changes

With the knowledge of the maxima separation evolution and changes in the O'Connell Effect, it is possible to <u>constrain the latitude of star spots in contact</u> <u>binaries to the stellar pole</u> and rule out small equatorial spots.

contact: bartek@oa.uj.edu.pl