The Role of Turbulene, Magnetic Fields and Feedback for Star Formation

Christoph Federrath

Brno – 28 Aug 2017

Australian Government

Australian National University

Optical

M51: The Whirlpool Galaxy Infrared

Infrared: NASA, ESA, M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo); Optical: NASA, ESA, S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA).

StarFormationisineffcient

Magnetic Fields?

Universal star formation "law"?

(Heiderman et al. 2010; Lada et al. 2010; Gutermuth et al. 2011; Kennicutt & Evans 2012)

Turbulence is key for Star Formation

(Federrath & Klessen 2012; Federrath et al. 2016)

Turbulence \longrightarrow **Stars** \longrightarrow **Feedback**

Magnetic Fields

Turbulence driven by

Solenoidal

Compressive

- Shear - Jets / Outflows - Cloud-cloud collisions - Winds / Ionization fronts - Spiral-arm compression - Supernova explosions - Gravity / Accretion

Dynamics (shear)

Carina Nebula, NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA), and NOAO/AURA/NSF

Turbulence driving – solenoidal versus compressive

Star Formation depends on how turbulence is driven

Solenoidal driving

Compressive driving

Turbulence driving – solenoidal versus compressive

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/supersonic/supersonic.html solenoidal driving compressive driving

Compressive driving produces stronger shocks and density enhancements

(Federrath 2013, MNRAS 436, 1245: Supersonic turbulence @ 4096³ grid cells)

The density PDF → Star Formation

Density PDF

log-normal:

$$p_{s} ds = \frac{1}{\sqrt{2\pi\sigma_{s}^{2}}} \exp\left[-\frac{(s - \langle s \rangle)^{2}}{2\sigma_{s}^{2}}\right] ds$$
$$s \equiv \ln\left(\rho/\rho_{0}\right)$$

Vazquez-Semadeni (1994); Padoan et al. (1997); Ostriker et al. (2001); Hopkins (2013)

$$\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$$

b = 1/3 (sol) b = 1 (comp)

Federrath et al. (2008, 2010); Price et al. (2011); Konstandin et al. (2012); Molina et al. (2012); Federrath & Banerjee (2015); Nolan et al. (2015)

The density PDF → Star Formation

No star formation

Active star formation

Kainulainen, Federrath, Henning (2014, Science)

The Star Formation Rate

Hennebelle & Chabrier (2011) : "multi-freefall model"

Federrath & Klessen (2012)

The Star Formation Rate

Statistical Theory for the
Star Formation Rate:
SFR ~ Mass/time freefall mass
time fraction
$$Freefall mass
time fraction
SFR_{ff} = \epsilon \int_{s_{crit}}^{\infty} \frac{t_{ff}(\rho_0)}{t_{ff}(\rho)} \frac{\rho}{\rho_0} p(s) ds = \epsilon \int_{s_{crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) ds$$

$$= \frac{\epsilon}{2} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \exp\left(\frac{\sigma_s^2 - s_{crit}}{\sqrt{2\sigma_s^2}}\right)\right]$$

Hennebelle & Chabrier (2011) : "multi-freefall model"

Federrath & Klessen (2012)

The Star Formation Rate

Statistical Theory for the Star Formation Rate:

$$Frac{SFR \sim Mass/time} \qquad freefall mass time fraction} \qquad freefall mass time fraction \qquad SFR_{ff} = \epsilon \int_{s_{crit}}^{\infty} \frac{t_{ff}(\rho_0)}{t_{ff}(\rho)} \frac{\rho}{\rho_0} p(s) \, ds = \epsilon \int_{s_{crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) \, ds = \epsilon \int_{s_{crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) \, ds = \epsilon \int_{s_{crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) \, ds = \frac{\epsilon}{2} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \exp\left(\frac{\sigma_s^2 - s_{crit}}{\sqrt{2\sigma_s^2}}\right)\right]$$
Hennebelle & Chabrier (2011) : "multi-freefall model"
SFR_{ff} = SFR_{ff}(\alpha_{vir}, \mathbf{b}, \mathbf{M}) \qquad (Krumholz+McKee 2005; Padoan+Nordlund 2011)
$$\sigma_s^2 = \ln\left(1 + b^2 \mathbf{M}^2\right)$$

(Federrath+2008; Molina+2012)

Federrath & Klessen (2012)

21

Density PDF → Star Formation Rate

SFR_{ff} (simulation) = 0.14 $\times 20$ SFR_{ff} (simulation) = 2.8SFR_{ff} (theory)= 0.15 $\times 15$ SFR_{ff} (theory)= 2.3Turbulence driving is a key parameter for star formation

Federrath - Brno 2017

Federrath & Klessen (2012)

Driving of turbulence in different galactic environments

Determine the driving in Galactic Centre (Federrath et al. 2016) vs. Galactic Disc

→ Recently applied to the SAMI galaxy survey (Federrath et al. 2017, MNRAS 468, 3965; Zhou et al. 2017)

The Star Formation Rate – Magnetic Fields

Statistical Theory for the
Star Formation Rate:

$$p(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{(s-s_0)^2}{2\sigma_s^2}\right)$$

$$s = \ln(\rho/\rho_0) \quad t_{\rm ff}(\rho) = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

$$s = \ln(\rho/\rho_0) \quad t_{\rm ff}(\rho) = \left(\frac{3\pi}{3G\rho}\right)^{1/2}$$

$$s = \ln(\rho/\rho_0) \quad t_{\rm ff}(\rho) = \left(\frac{3\pi$$

The Star Formation Rate – Magnetic fields

 $\begin{aligned} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{simulation}\right) = \mathbf{0.46} & \times \mathbf{0.63} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{simulation}\right) = \mathbf{0.29} \\ & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{theory}\right) & = \mathbf{0.45} & \times \mathbf{0.40} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{theory}\right) & = \mathbf{0.18} \\ & \mathbf{Magnetic field \ reduces \ SFR \ and \ fragmentation \ (by \ factor \ \sim 2).} \\ & \mathsf{Padoan \ \& \ Nordlund \ (2011); \ Padoan \ et \ al. \ (2012); \ Federrath \ \& \ Klessen \ (2012)} \end{aligned}$

Turbulent dynamo in compressible gases

Compression of field lines during collapse (flux-freezing):

Source: D. Schleicher 2010

B

Dynamo:

 $\gg o^{2/3}$

conservation of magnetic flux:

$$R_1^2 \cdot B_1 = R_2^2 \cdot B_2$$
$$\implies B \propto \rho^{2/3}$$

Gravity-driven dynamo

Movies available: <u>http://www.mso.anu.edu.au/~chfeder/pubs/dynamo_grav/dynamo_grav.html</u> Can dynamo work in a collapsing cloud?

Magnetohydrodynamic simulations by Sur et al. (2010, 2012); Federrath et al. (2011):

- gravitationally unstable Bonnor-Ebert sphere

0.50

0.01

time

- initial large-scale turbulence
- weak intial B = 1 nano Gauss

Dynamo:

 $B \gg \rho^{2/3}$

-Deep adaptive mesh refinement

 10^{6}

10⁵

104

 10^{3}

0

 $B / \rho^{2/3}$

Turbulent dynamo in compressible gases

Stretch-Twist-Fold Dynamo (",turbulent dynamo"):

Brandenburg & Subramanian (2005); Federrath (2016, Journal of Plasma Physics 82, 6)

Turbulent dynamo in compressible gases

Gravity-driven dynamo

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/dynamo_grav/dynamo_grav.html

Federrath et al. (2011)

Dependence of dynamo on magnetic Prandtl number

Prandtl number 0.1

Prandtl number 10

Federrath et al. (2014, ApJ 797, L19)

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/dynamo_pm/dynamo_pm.html

Dependence of supersonic dynamo on Pm and Re

Supersonic dynamo power spectrum

Dynamo works; Magnetic Field important even in Early Universe! Federrath et al. (2014, ApJ 797, L19); see also Schober et al. (2012)

Jet Feedback Subgrid Model

Federrath et al. 2014, ApJ 790, 128

List of SGS outflow parameters.

SGS Parameter	Symbol	Default	Reference
Outflow Opening Angle	θ_{out}	30°	[1]
Mass Transfer Fraction	$f_{ m m}$	0.3	[2]
Jet Speed Normalization ^{a}	$ \mathbf{V}_{\mathrm{out}} $	$100 {\rm km s^{-1}}$	[3]
Angular Momentum Fraction	$f_{ m a}$	0.9	[4]
Outflow Radius	$r_{ m out}$	$16 \Delta x$	Section 4

^a The outflow velocities are dynamically computed Notes. according to the Kepler speed at the footpoint of the jet, $|\mathbf{V}_{out}| = 100 \,\mathrm{km \, s^{-1}} (M_{sink}/0.5 \, M_{\odot})^{1/2}$ (see Equation 13). References: [1] Blandford & Payne (1982); Appenzeller & Mundt (1989); Camenzind (1990); [2] Hartmann & Calvet (1995); Calvet (1998); Tomisaka (1998); Bacciotti et al. (2002); Tomisaka (2002); Lee et al. (2006); Cabrit et al. (2007); Lee et al. (2007); Hennebelle & Fromang (2008); Duffin & Pudritz (2009); Bacciotti et al. (2011); Price et al. (2012); Seifried et al. (2012); [3] Herbig (1962); Snell et al. (1980); Blandford & Payne (1982); Draine (1983); Uchida & Shibata (1985); Shibata & Uchida (1985, 1986); Pudritz & Norman (1986); Wardle & Königl (1993); Bacciotti et al. (2000); Königl & Pudritz (2000); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Machida et al. (2008); [4] Pelletier & Pudritz (1992); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Hennebelle & Fromang (2008).

Outflow mass:
$$M_{\text{out}} = f_{\text{m}} \dot{M}_{\text{acc}} \Delta t$$

velocity: $|\mathbf{V}_{\text{out}}| = \left(\frac{GM_{\text{sink}}}{10 R_{\odot}}\right)^{1/2} = 100 \,\text{km s}^{-1} \left(\frac{M_{\text{sink}}}{0.5 M_{\odot}}\right)^{1/2}$

Outflow angular momentum: $\mathbf{L}_{out} = f_{a} \left(\mathbf{S}_{sink}' - \mathbf{S}_{sink} \right) \cdot \mathbf{S}_{sink}' / |\mathbf{S}_{sink}'|$

Why is Star Formation is so Inefficient?

Movies available: <u>http://www.mso.anu.edu.au/~chfeder/pubs/ineff_sf/ineff_sf.html</u>

Turb

Turb+ Mag+ Jets

Star Formation is Inefficient

Only the combination of turbulence, magnetic fields and feedback gives realistic SFR

Federrath 2015, MNRAS 450, 4035

Implications for the stellar initial mass function (IMF)

Federrath et al. 2014, ApJ 790, 128

Outflow/Jet feedback reduces average star mass by factor ~ $3 \rightarrow IMF!$

Jet Feedback in Binary Star Formation

Kuruwita, Federrath, Ireland (2017, MNRAS 470, 1626)

Movies available: https://www.mso.anu.edu.au/~chfeder/pubs/binary_jets/binary_jets.html

Jet structure and power depend on binary separation \rightarrow different star mass \rightarrow Challenge for understanding and modelling the IMF!

1) Star Formation is complex and inefficient \rightarrow

Only the combination of Turbulence + Magnetic Fields + Feedback

gives realistic (observed) SFRs

2) Determined dynamo amplification in compressible, supersonic turbulence

→ Dynamo works in supersonic plasmas → B important in early Universe Dependence on Prandtl and Reynolds number

3) Importance of magnetic fields and feedback for the IMF:

Determine the Initial Mass Function (IMF) of Stars

 \rightarrow Necessary physics:

turbulence, magnetic fields, and jet feedback (+ radiation feedback)