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1. Glitch and its identification
1.1 Timing observation

Courtesy D. Champion

Pulsar timing observations 
‘sample’ neutron star rotation 
phases discretely and unevenly.

white noise timing noise

● TOA interval
● Observing cadence 

(observing sampling)



  

1.2 Glitch, identification and measurement 
Glitch is unexpected, ‘instantaneous’ increase in pulse frequency. 

Simulation of a ToA set:
● MJD 52000 – MJD 55000
● 1400MHz
● 30d cadence
● 10us ToA error
● Dv = 10^-9 Hz glitch at t_g = 

MJD 53000
t g

pre-glitch v at MJD 53000
= 9.36653721085499 Hz

                -

post-glitch v at MJD 53000
= 9.36653721185579 Hz

                =

    -1.0008 x 10^-9 Hz



  

1.3 What can we draw from Yu et al. (2013) 
● 165 pulsars 
● Parkes observed
● Cadences 2 -- 4 weeks
● Data range 5.3 -- 20.8 yr
● 36 glitching pulsars
● 107 glitches
● 7 pulsars with gl. no. >= 5

PSR J1341-6220
17

Figs. Observed aggregated / 
individual Dv distributions.
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2. Constraints on detecting glitch
2.1 Glitch epoch relative to observing span and observing cadences

detection window
10 cm

‘epoch term’ : P{D(dv) | C_e}P{C_e}

P {C e }=
Entire time spanbut the first two pluslast two TOAintervals

Entire time span

P {D (Δ ν)∣C e}=1



  

2.2 Epoch of another glitch relative to observing cadences 

1.4 cm
ΔT

11.8 cm               

‘multiglitch term’ : P{D(dv) | C_m}P{C_m}

P {Cm }={

ΔT
T

if coincidence

1−
ΔT
T

otherwise
P {D (Δ ν)∣Cm }={0.5 if coincidence

1.0 otherwise

where T is the length of detection window

For typical Parkes obs., 
T ~ 4000 d (10 yr)   dT ~ 6 x 20 d ~ 120 d    dT / T ~ 3% 
another 3% will be multiplied for a third glitch to coincide with the two 
and so negligible.



  

2.3 Strength of timing noise
● Simulated sets of timing residuals
● A Dv = 10^-7 Hz glitch added
● From top panel to bottom, timing 

noise grows

‘noise’ term : P{D(dv) | C_n} P{C_n}
● Group case: 
P{C_n} is a one dimensional array indicating 
distribution of timing noise strength. P{D(dv)|
C_n} forms a two dimensional array, each 
element indicates the probability for 
detecting glitch with certain size occurred in 
certain strength of timing noise.  
● Individual case:
P{C_n} is an arbitrary number. P{D(dv)|C_n} is 
a one dimensional array, each element 
indicates the probability for detecting glitch 
with certain size.
● For an element, P{D(dv)|C_n} = no. of 

detectable gl. / total gl. no.



  

3. Solving the complete probability formula
3.1 The formula

P {D (Δ ν)} = {

P {D (Δ ν∣C e )P {C e}

+P {D (Δ ν∣Cm)}P {Cm}

+P {D (Δ ν∣Cn)}P {Cn } withindetectionwindow
0 otherwise

3.2 Solution
● Group case

We modelled timing noise of 
157 Yu et al. (2013) pulsars 
with power-law model using 
the numerical Bayesian 
inference approach 
TempoNest to derive P{C_n}.  

Fig. P{C_n}, distribution of timing noise strength (12 bins). Contribution of 
the 36 observed glitching pulsars is indicated by the red dashed bars.   



  

We introduced the Monte Carlo 
simulation to derive the P{D(dv)|
C_n}. In each realisation, for any 
pulsar out of the 157, real pulsar 
ephemeris, observing sampling, 
TOA error bars and the measured 
timing noise parameters were used 
to produce timing noise. A glitch 
with size uniformly distributed 
between 1.65e-9 and 3.52e-5 Hz 
(the min and max glitch found in 
the Yu et al. data) was uniformly 
distributed into the specific 
detection window.  TempoNest, 
was used to model data with 
searching for glitch. One hundred 
realisations were made for each 
pulsar.  

Fig. The derived P{D(dv)|C_n} matrix (12 x 20 
elements). Value of each element indicates 
the ratio of positive detections to the total 
number of glitches distributed into the 
particular size and amplitude interval. To better 
present the image, element values are 
squared. 



  

We calculate the product between 
the matrix P{D(dv)|C_n} and the array 
P{C_n} to derive solution for the 
noise term.
    For each simulated glitch, we 
calculate P{D(dv)|C_e}P{C_e} + 
P{D(dv)|C_m}P{C_m} value with the 
given definitions. Then we distribute 
all values into the 20 size bins, make 
sum in each bin followed by a 
normalisation to derive solution for 
the epoch and the multiglitch term.
    For each bin, we make sum over 
the terms followed by a normalisation 
to derive solution for the complete 
probability formula, P{D(dv)}.    

Fig. Derived glitch detection probability 
density (red filled bars) of the Yu et al. 
(2013) data sets. The partial components, 
noise term and the epoch term plus 
multiglitch term are indicated by blue 
dashed and black dashed-dotted bars. 



  

4. Inferring distribution 
embedded in data
4.1 Group case
The similarity between the 
observed and inferred distributions 
implies Yu et al. (2013) have 
detected all detectable glitches.

observation / detection probability

4.2 Individual case
Similar approach was used to 
solve the complete probability 
formula for the seven individual 
pulsars which have been observed 
to glitch for five or more times.
  Figure to the right shows glitch 
detection probability density of 
PSR J1341-6220. The other six 
are shown on next page. 
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To derive distribution embedded in data for each of the seven pulsars, 
we first scatter observed glitch sizes into the 20 size bins, count of bin i 
is denoted n_i. Secondly, for the bins with nonzero n_i, we divide the 
count by the density value, the nearest integer is denoted m_i. Thirdly, 
when forming CDF of the sizes, we used the m_i values as the step 
(instead of one) at each size value. Finally, we least-squares fit the CDF 
with power-law model 

P( <Δ ν)=
Δν1+ s−Δ νmin

1+s

Δνmax
1+ s−Δ νmin

1+ s PSR J1341-6220

s=0.7−0.7
+1.4

→−0.4−0.4
+1.0



  

PSR J1048-5832

s=1.9−4.7
+12.2

→2.0−4.3
+10.9 s=−0.8−5.1

+4.8
→−1.8−6.5

+7.5
PSR J1413-6141PSR J1048-5832

s=−1.3−2.5
+2.1

→−1.4−2.7
+1.9

PSR J1420-6048

PSR J1740-3015

s=0.5−3.9
+12.6

→0.9−4.0
+12.8

PSR J1801-2304

s=−0.1−1.6
+2.7

→0.0−1.6
+2.6

PSR J1801-2451

s=5.9−6.5
+11.6

→7.4−7.4
+17.2



  

5. Conclusion
● By comparing the inferred and observed distributions, we found Yu et al. (2013) have 

detected all detectable glitches with the manual method described therein.
● In this work, we have established a good model for the detectability to glitches of the 

data set.
● Among the individual distributions, the most evident correction occurred for PSR J1341-

6220, this pulsar is observed to show the strongest timing noise in the sample; the 
evident correction manifests timing noise absorbs glitches.

● PSR J1341-6220 shows 17 glitches in our data. The Lomb periodogram is derived for 
the time series of variation of glitch size as a function of glitch epoch. Straight-line fit to

slope=0.5(3)

the periodogram results in a slope that violates 
prediction (-1) of the self-organised criticality. 

Thank you

For details, please refer to Yu M., Liu 
Q.-J., 2017, MNRAS, 468, 3031
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