Fields and Flows: Magnetic Massive Stars

Simon Daley-Yates Supervisor: Dr Ian Stevens University of Birmingham

Magnetically Confined O-star Winds

ud-Doula & Owocki 2002

Inclined Magnetic Rotating O-star

- Breaks the symmetry of the wind.
- Results in a rotationally modulated wind structure.
- Time dependent emission

Thermal Radio Emission

Gives us an observational window onto the stellar wind dynamics.

- Allows us to calculate mass-loss rates.
- Gives constraints on the stellar age and evolution.
- Important for population synthesis, end of life processes such as supernova and black hole formation etc...

Radiatively Driven Winds

C. A. K. Theory (Castor, Abbott and Kline)

- The wind is driven by scattering of stellar radiation in emission wind absorption lines.
- Inherently unstable, with extensive observational evidence for variability and on large and small scales.

Magnetism In MassivE Stars (MIMES)

Petit et al., 2013, MNRAS, 398, 429

Magnetic Field Topology

- Dipole magnetic field topology.
- Inclined with respect to rotation axis
- Common configuration among massive stars.
- For this study, an inclination of 30^o was chosen.

- 300 G
- 9 R₀
- 26 M₀
- 36 000 K
- $Log_{10}(L_*/L_{\odot}) = 5.06$
- Rotation at 20% critical rotation
- Mass-loss ~ $10^{-7} M_{\odot}/yr$

Simulation setup

- Simulations performed using the PLUTO code (Mignone et al, 2012, ApJs 198, 31).
- Simulations of large scale wind structure (1 - 40 R*).
- Initial conditions are according to a CAK wind and a dipole magnetic field.

Density Structure

Density Structure

Density Structure

Thermal Radio Emission

Wind Structure

The magnetic field leads to confinement of the wind material into a disk, close to the star.

Stellar rotation with magnetic field tension, acts to break the disk up at larger radii.

Thermal Radio Spectrum

Time Varying Thermal Radio Emission

Time Varying Thermal Radio Emission

Radio emission has a strong dependance on the inclination with respect to the observer and rotational phase.

Emission can vary by a factor of 1.5 over a stellar rotation.

Summary

- Magnetic field plays a strong role in the shaping the non-symmetric evolution of the wind.
- This non-symmetry should be apparent in thermal radio observations.
- Mass-loss modulation by the magnetic field can be see in the radio spectrum.
- Radio light curves together with inclination are critical to understanding the impact of the field on the wind.