Magnetism, evolution and rotation of Intermediate-Mass T Tauri Stars (IMTTS)

Florent VILLEBRUN

PhD student at IPAG (Grenoble, France)

Supervisors - Evelyne ALECIAN & Jérôme BOUVIER

Brno - August 2017
Introduction

- Alecian 2014: « Magnetic fields along the PMS phase »

IMTTS

= Convective envelope dynamo magnetic field

Herbig Ae

= Radiative envelope dynamo magnetic field
Introduction

IMTTS (object of this study) we expect common dynamo magnetic fields

Herbig Ae and later... 5-10% of stars: very intense B (300 - 30 kG), stable, and mainly dipolar fields

These are « fossil magnetic fields »

- Alecian 2014: « Magnetic fields along the PMS phase »
Aim / methodology

- We want to bring **observational constraints** on a large sample of Herbig Ae precursors:
 - 38 intermediate-mass T Tauri stars (IMTTS)
 - Mass: 1.2 - 3.5 solar masses
 - Teff: 4800 - 7500K
 - SpT: early K - early F
 - vsin(i): 5 - 200 km/s
 - accreting or not
 - Spectropolarimetry
 - (ESPaDOnS / HARPSpol)
 - Stellar fundamental parameters
 - Magnetic field properties and topologies
Aim / methodology

- We want to bring observational constraints on a large sample of Herbig Ae precursors:

38 intermediate-mass T Tauri stars (IMTTS)
- Mass: 1.2 - 3.5 solar masses
- Teff: 4800 - 7500K
- SpT: early K - early F
- vsin(i): 5 - 200 km/s
- accreting or not

Spectropolarimetry (ESPaDOnS / HARPSpol)

Stellar fundamental parameters
Magnetic field properties and topologies

- Villebrun et al. 2017 (in prep): « Magnetic fields and fundamental stellar parameters in 38 intermediate-mass T Tauri stars »
Determination of stellar parameters

- **Teff** and **vsin(i)** from ZEEMAN spectrum synthesis code:
 - MARCS atmosphere, solar abundances, log(g)=4
 - COUP 1350 ESPaDOnS spectrum (black) and its fit (red)
 - Teff = 5590 K (σ = 130 K)
 - vsini = 61.8 km/s (σ = 1.0 km/s)

- about the ZEEMAN code: *Landstreet 1988* ; *Folsom et al. 2012*
Determination of stellar parameters

- **Teff** and **vsin(i)** from ZEEMAN spectrum synthesis code:
 MARCS atmosphere, solar abundances, log(g)=4

 - about the ZEEMAN code: **Landstreet 1988 ; Folsom et al. 2012**

 COUP 1350 ESPaDOnS spectrum (black) and its fit (red)

 Teff = 5590 K (σ = 130 K)
 vsini = 61.8 km/s (σ = 1.0 km/s)

- **Bolometric luminosity** from GAIA parallaxes (when available) or associated cluster/SFR distances
 + magnitudes from the literature using (V-J) color calculations.

 - magJ from 2MASS catalog (Cutri et al. 2003)
 - magV mainly from Kharchenko (2001), or NOMAD catalog
 - Theoretical (V-J) for IMTTS from Pecault & Mamajek (2013)
 - Theoretical (BC)j from Pecault & Mamajek (2013)
 - Total to selective extinction Rj from Casagrande et al. (2010)
Determination of stellar parameters

- **Teff** and **vsin(i)** from ZEEMAN spectrum synthesis code:
 - MARCS atmosphere, solar abundances, log(g)=4
 - about the ZEEMAN code: Landstreet 1988; Folsom et al. 2012

- **Bolometric luminosity** from
 - GAIA parallaxes (when available)
 - or associated cluster/SFR distances
 - magnitudes from the literature using (V-J) color calculations.

COUP 1350 ESPaDOnS spectrum (black) and its fit (red)

- magJ from 2MASS catalog (Cutri et al. 2003)
- magV mainly from Kharchenko (2001), or NOMAD catalog
- Theoretical (V-J) for IMTTS from Pecault & Mamajek (2013)
- Theoretical (BC)j from Pecault & Mamajek (2013)
- Total to selective extinction Rj from Casagrande et al. (2010)

Typical uncertainties: 100-150K, 1-2km/s, 0.05-0.1 log(L)
Magnetic fields: detection

- **Longitudinal mean magnetic field** using the « Least Square Deconvolution » (LSD) technique

- creation of a **weighted mean absorption line** using a mask that takes into account the depth and Landé factor of each line
 (mask synthesized from our Teff and VALD lines)

1. the stokes V profile must be located inside the I profile
2. the stokes N profile must be flat (spurious signature)
3. false alarm probability must be high

- about the LSD technique: Donati et al. 1997
Magnetic fields: detection

- Longitudinal mean magnetic field using the "Least Square Deconvolution" (LSD) technique

- Creation of a **weighted mean absorption line** using a mask that takes into account the depth and Landé factor of each line (mask synthesized from our Teff and VALD lines)

1. The Stokes V profile must be located inside the I profile
2. The Stokes N profile must be flat (spurious signature)
3. False alarm probability must be high

- Only 17 stars (out of 38) are magnetic!

- About the LSD technique: Donati et al. 1997
Magnetic fields: limit of detection

- In case of non-detection: we compute the **upper-limit value** of the magnetic field

Oblique rotator model (parameters: i, beta, phase, B_d)
we need to try many configurations with different values of B_d

Monte-Carlo simulations

- *[Alecian et al. 2016]*: «Magnetic field of the system HD 5550»

For this star, the combination of 4 observations
(4 colored lines) results in 95% detection of a
field $B_d = 2100$G (plain black line)
Magnetic fields : limit of detection

- In case of non-detection: we compute the upper-limit value of the magnetic field

Oblique rotator model (parameters: i, beta, phase, B_d)
we need to try many configurations with different values of B_d

→ **Monte-Carlo simulations**

- Alecian et al. 2016: « Magnetic field of the system HD 5550 »

1 dot = 1 non-magnetic star → when $v \sin(i)$ is high,
the stokes V signature is diluted into noise
Positioning of our sample in the HRD

- Top left small symbols = HAeBes (from previous studies)

- Blue line ↔ Conv. / Rad. limit ↔ Mconv / Mtot = 1%

- Green line ↔ Mconv / Mtot = 99%

- Only 2 of these stars have magnetic map (CR & CV Cha)
 - Hussain et al. 2009

- PMS evolutionary model: CESAM code
Positioning of our sample in the HRD

- half of them are actually NOT convective!

- almost all the convective stars host a magnetic field (red)

- almost all the radiative stars lost their magnetic field (black)

- BUT the HRD is model dependent!!

- PMS evolutionary model: CESAM code
Problematic: could the stellar model assumptions infer our future estimates of R, M, age, internal structure? Are the discrepancies between different PMS models smaller than our observational uncertainties?

In all 3 cases: sun calibrated / no rotation / no mass loss / no diffusion / no overshooting

CESAM

(Yveline LEBRETON)

- $Z_{ini} = 0.0131$
- $Y_{ini} = 0.2539$
- $\alpha = 1.6223$
- EoS: *OPAL (2005)*
- Opacities: *OPAL (1996)*
- Abundances: *Asplund (2005)*
- Atmosphere: *Eddington gray atmosphere*

Geneva CODE

(Lionel HAEMMERLE)

- $Z_{ini} = 0.0122$
- $Y_{ini} = 0.2485$
- $\alpha = 1.6$
- EoS: *OPAL (1996)*
- Opacities: *OPAL (1996)*
- Abundances: *Asplund (2005)*
- Atmosphere: *Meynet & Maeder (1996)*

Geneva STAREVOL

(Florian GALLET, Corinne CHARBONNEL, Louis AMARD)

- $Z_{ini} = 0.0134$
- $Y_{ini} = 0.2676$
- $\alpha = 1.973$
- EoS: *Siess (2000)*
- Opacities: *Livermore*
- Abundances: *Asplund (2005)*
- Atmosphere: *PHOENIX (Allard 2011)*
PMS model influence on the HR diagram

Blue = CESAM Red = Starevol Geneva Green = Geneva Code
PMS model influence on the HR diagram

Blue = CESAM
Red = Starevol Geneva
Green = Geneva Code
Observational prospectives

- we selected 7 IMTTS with different internal structures

CR Cha /// IRAS 22144 /// V1000 Sco /// V1156 Sco
HBC 741 /// HD 133938 /// V1149 Sco

Monitoring of Stokes I and V signatures (obtained with HARPSpol or ESPaDOnS) + Zeeman Doppler Imaging

= already observed or accepted

= still in our « shopping-list »
Observational prospectives

- we selected 7 IMTTS with different internal structures

CR Cha /// IRAS 22144 /// V1000 Sco /// V1156 Sco
HBC 741 /// HD 133938 /// V1149 Sco

Monitoring of Stokes I and V signatures
(obtained with HARPSpol or ESPaDOnS)
+
Zeeman Doppler Imaging

Surface magnetic field topology
and brightness maps
+
Confusograms

= already observed or accepted

= still in our « shopping-list »
Conclusion & more to do...

- Fundamental parameters are now well constrained for these stars:
 \[\text{Teff @ 100-150K} \quad \text{vsini(i) @ 1-2km/s} \quad \text{log(L/Lsol) @ 0.05-0.1} \]

- Threshold of magnetic detection is typically < 1000G (except for fast-rotators)

- The transition between magnetic and non-magnetic stars match with the convective/radiative limit of PMS models

- Magnetic field loss is fast, as it occurs over a timescale of 1 Myr at most

- In the radiative region, we have less than 10% of magnetic stars (2 out of 21)

- A spectropolarimetric monitoring of 7 IMTTS (HARPSpol + ESPaDOnS) is ongoing