Simulations of Solar and Stellar dynamos

Gustavo Guerrero
Physics Department (ICEx-UFMG)

Collaborators:
B. Zaire (UFMG), F. Camachao (UFMG),
P. Smolarkiewicz (ECMWF), A. Kosovichev (NJIT),
N. Mansour (NASA-Ames)

Magnetic 17, Brno, Aug. 28 – Sept. 1 – 2017
Contents

• Introduction
 – Sunspots and the Sun’s large scale magnetic field
 – Stellar magnetism
 • F and G stars (oscillatory magnetic fields)
 • Stars in the HR diagram

• Simulating stellar magnetism
 – Mean-field, kinematic/dynamic, models (pros, cons)
 – Global 3D simulations
 • What have we learned from these models
 • Stellar dynamo period
 • Stellar dynamo saturation
 • The solar cycle and sunspot formation

• Conclusions
1. Introduction
The solar cycle

- Besides the 11 yr cycle
- ~80 yr periodicity (Gleissberg, 1973)
- ~2 yr periodicity (Fletcher et al. 2010)
- Mounder-like minimum events
P(-) → T(-) → P(+) → T(-) → ...

- Where is (are) the solar dynamo (s) located?
- Do sunspots form from magnetic flux tubes or from MHD instabilities near photosphere?
Two branches: A (active) and I (inactive) stars. Is this trend real?

Several stars in the sample exhibit 2 cycle periods: e.g., N/n, E/e, G/g, J/j

Is the Sun a solar-like star?

Is this evidence of multiple dynamos operating in the stellar interiors?

Stars across the HR diagram

\[
\langle |B_v| \rangle \propto R_o^{-1.2}
\]

\[
\langle |B_v| \rangle \propto R_o^{-1.38 \pm 0.14}
\]

Vidotto et al. (2014)
Is there a fundamental dynamo mechanism able to explain the saturation of magnetic field strength?

Do stellar tachoclines play a role in this dynamo process?
2. Modeling stellar dynamos
Mean-field dynamo mechanism
Parker (1955)

- Induction equation

\[\frac{\partial B}{\partial t} = \nabla \times (U \times B - \eta J) \quad J = \nabla \times B \]

\[\nabla \times (U \times B) = - (U \cdot \nabla B) + (B \cdot \nabla U) - (B \nabla \cdot U) \]

advection \quad stretching \quad compression

- Induction/advection vs. diffusion

\[R_m = \frac{u_{\text{rms}}}{(\eta k_f)} \]

<table>
<thead>
<tr>
<th>(T [K])</th>
<th>(\rho [\text{g cm}^{-3}])</th>
<th>(P_m)</th>
<th>(u_{\text{rms}} [\text{cm s}^{-1}])</th>
<th>(L [\text{cm}])</th>
<th>(R_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar CZ (upper part)</td>
<td>(10^4)</td>
<td>(10^{-6})</td>
<td>(10^{-7})</td>
<td>(10^6)</td>
<td>(10^8)</td>
</tr>
<tr>
<td>Solar CZ (lower part)</td>
<td>(10^6)</td>
<td>(10^{-1})</td>
<td>(10^{-4})</td>
<td>(10^4)</td>
<td>(10^{10})</td>
</tr>
<tr>
<td>Protostellar discs</td>
<td>(10^3)</td>
<td>(10^{-10})</td>
<td>(10^{-8})</td>
<td>(10^5)</td>
<td>(10^{12})</td>
</tr>
<tr>
<td>CV discs and similar</td>
<td>(10^4)</td>
<td>(10^{-7})</td>
<td>(10^{-6})</td>
<td>(10^5)</td>
<td>(10^7)</td>
</tr>
<tr>
<td>AGN discs</td>
<td>(10^7)</td>
<td>(10^{-5})</td>
<td>(10^4)</td>
<td>(10^5)</td>
<td>(10^9)</td>
</tr>
<tr>
<td>Galaxy</td>
<td>(10^4)</td>
<td>(10^{-24})</td>
<td>(10^{11})</td>
<td>(10^6)</td>
<td>(10^{20})</td>
</tr>
<tr>
<td>Galaxy clusters</td>
<td>(10^8)</td>
<td>(10^{-26})</td>
<td>(10^{29})</td>
<td>(10^8)</td>
<td>(10^{23})</td>
</tr>
</tbody>
</table>
\[\frac{\partial \vec{B}}{\partial t} - \frac{1}{r} \left[\frac{\partial}{\partial r} \left[r \left(u_r + \gamma_r \right) \vec{B} \right] + \frac{\partial}{\partial \theta} \left[\left(u_\theta + \gamma_\theta \right) \vec{B} \right] \right] = s \left(\vec{B}_p \cdot \nabla \right) \Omega \]

\[- \left[\nabla \eta_T \times (\nabla \times \vec{B}) \right]_\phi + \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \vec{B} + \left[\nabla \times (\alpha^D \vec{B}) \right]_\phi \]

\[\frac{\partial \vec{A}}{\partial t} - \frac{1}{s} \left[(\vec{u}_p + \gamma_p) \cdot \nabla \right] (s \vec{A}) = \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \vec{A} + (\alpha^D \vec{B})_\phi \]

with \(\eta_T = \eta + \beta \) The total magnetic diffusivity

\[C_\alpha = \frac{\alpha_0}{\eta_T k_f}, \quad C_\Omega = \frac{\Delta \Omega}{\eta_T k_f^2}, \quad C_U = \frac{U_0}{\eta_T k_f} \]
Ω-effect (P → T)

Obtained by helioseismology inversions

(Schou et al. 1998)

Azimuthal flow of differential rotation

The longer the arrow the faster the flow

Meridional magnetic field is transformed into azimuthal magnetic field
\[
\frac{\partial \bar{B}}{\partial t} - \frac{1}{r} \left[\frac{\partial}{\partial r} \left[r (u_r + \gamma_r) \bar{B} \right] + \frac{\partial}{\partial \theta} \left[(u_\theta + \gamma_\theta) \bar{B} \right] \right] = s (\bar{B}_p \cdot \nabla) \Omega
\]

\[-[\nabla \eta_T \times (\nabla \times \bar{B})]_\phi + \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \bar{B} + [\nabla \times (\alpha^D \bar{B})]_\phi\]

\[
\frac{\partial \bar{A}}{\partial t} - \frac{1}{s} \left[(\bar{u}_p + \gamma_p) \cdot \nabla \right] (s \bar{A}) = \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \bar{A} + (\alpha^D \bar{B})_\phi
\]

with \(\eta_T = \eta + \beta \) The total magnetic diffusivity

\[
C_\alpha = \frac{\alpha_0}{\eta_T k_f}, \quad C_\Omega = \frac{\Delta \Omega}{\eta_T k_f^2}, \quad C_U = \frac{U_0}{\eta_T k_f}
\]
\(\alpha \)-effect (P \(\rightarrow \) T): contribution from MHD turbulence

\[\alpha_{ij} \dot{B} = \alpha B \]

and \(\alpha \) is a pseudo-scalar. It can only exist if the system lacks of reflectional symmetry (e.g., the system is rotating).
\[
\frac{\partial \vec{B}}{\partial t} - \frac{1}{r} \left[\frac{\partial}{\partial r} \left[r(u_r + \gamma_r) \vec{B} \right] + \frac{\partial}{\partial \theta} \left[(u_\theta + \gamma_\theta) \vec{B} \right] \right] = s(\vec{B}_p \cdot \nabla) \Omega \\
\left[\nabla \eta_T \times (\nabla \times \vec{B}) \right]_\phi + \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \vec{B} + \left[\nabla \times (\alpha^D \vec{B}) \right]_\phi
\]

\[
\frac{\partial \vec{A}}{\partial t} - \frac{1}{s} \left[(\vec{u}_p + \gamma_p) \cdot \nabla \right] (s \vec{A}) = \eta_T \left(\nabla^2 - \frac{1}{r \sin \theta} \right) \vec{A} + (\alpha^D \vec{B})_\phi
\]

with \(\eta_T = \eta + \beta \) The total magnetic diffusivity

\[
C_\alpha = \frac{\alpha_0}{\eta_T k_f}, \quad C_\Omega = \frac{\Delta \Omega}{\eta_T k_f^2}, \quad C_U = \frac{U_0}{\eta_T k_f}
\]
α-Ω dynamo with solar differential rotation

(A) $\Omega(r, \theta)$ Isocontours

(B) $\alpha\Omega$ Model, $\alpha \sim \sin^2 \theta \cos \theta$, $C_\alpha = +10$

(C) $\alpha\Omega$ Model, $\alpha \sim \sin^2 \theta \cos \theta$, $C_\alpha = -10$

Charbonneau (2010)
After an educated (not always possible) fine tuning of parameters

- Deep meridional flow
 - Nandy & Choudhuri (2002)
 - Chatterjee et al. (2004)

- α effect in two different locations
 - Dikpati et al. (2004)

- Turbulent pumping
 - Kitchatinov & Olenskoi (2011)

See also: Bonanno et al. (2002), Jouve et al. (2008), Käpylä et al. (2006)
Global simulations, solve the full set of MHD equations in 3D and spherical geometry.
Difficulties

\[\text{Re} = \frac{u_{\text{rms}} L}{\nu} \sim 10^{12} \quad (10^2) \]

\[\text{Rm} = \frac{u_{\text{rms}} L}{\eta} \sim 10^9 \quad (10^2) \]

\[\text{Ra} = \frac{G M (\Delta r)^4}{\nu \kappa R^2} \frac{-1}{c_p} \frac{ds}{dr} \geq 10^{15} \quad (10^6) \]

- Important dynamical scales go from km’s to hundreds of Mm.
- Energy transfer from bottom to top
- Simulations use large values for dissipative terms to keep stable
- Large-scale fields evolve in time scales going from years to decades
- Simulations take long time to achieve HD and MHD steady states

- SGS parametrization is needed
 Guizaru et al. (2010), Guerrero et al. (2016), Auguston et al. (2015)
Dynamo simulations with EULAG-MHD

\[\nabla \cdot (\rho_s u) = 0, \quad (2) \]

\[\frac{Du}{Dt} + 2\Omega \times u = -\nabla \left(\frac{p'}{\rho_s} \right) + g \frac{\Theta'}{\Theta_s} + \frac{1}{\mu_0 \rho_s} (B \cdot \nabla)B, \quad (3) \]

\[\frac{D\Theta'}{Dt} = -u \cdot \nabla \Theta_e - \frac{\Theta'}{\tau}, \quad (4) \]

\[\frac{DB}{Dt} = (B \cdot \nabla)u - B (\nabla \cdot u), \quad (5) \]

- ILES: implicit large eddie simulations, maximizes Re and Rm (see Strugarek et al. 2015)
- Energy equation solves for \(\Theta' \) (stolen from meteorology)
- Able to resolve a tachocline
- Ghizaru et al (2010) was the first global MHD simulation able to produce magnetic cycles
Are tachoclines relevant?

Models **CZ** (convection zone only)

Models **RC** (radiative/convective zones)
The dynamo period

\[T_{\text{rot}} = 28 \text{ days, } T_{\text{cyc}} = 1 \text{ yr} \]

\[\eta_t = \frac{1}{3} \tau_c u_{\text{ms}}^2, \]

\[\eta_0 \]

Turbulent magnetic diffusivity

- **Tachocline Instabilities**: develop turbulence in the stable layer

 - (To be confirmed by other codes)

Guerrero+ (2016a)
Sun continues being an odd star

Strugarek et al. (2017)
Models with convective zone only

Guerrero et al. (2017, in prep)
Models with tachocline
Dynamo saturation

- The results of global simulations resemble the regimes observed
- Local dynamo sources vs deep seated dissipation rate
- Meridional circulation and magnetic buoyancy do not contribute to the dynamo process
Conclusions

- Tachoclines play a relevant role in turbulent global dynamos
- Dynamo periods in RC models increase with the rotation period (the Sun is still a weird star)
- The dynamo saturation relation, B vs Ro is reproduced in RC models
- Shear-current instabilities at the tachocline might determine the dynamo cycle.
Thanks!