A HIGH-PRECISION SURVEY OF MAGNETIC WHITE DWARFS

STEFANO BAGNULO (AOP, UK)
JOHN D. LANDSTREET (AOP, UK, & UWO, CA)
A.J. MARTIN (OPM, FR)
G. VALYAVIN (SAO, RU)
The White Dwarf Zoo

- DA Only H
- DB Only He
- DC Only Continuum
- DO He II + maybe HeI and/or H
- DZ Only metal lines
- DQ Carbon features

Sion et al. (1983)
• $|B| > 50 \text{ MG}$: Magnetic force ~ Coulomb force; polarisation of the continuum + spectral upheaval

• $1\text{ MG} < |B| < 50 \text{ MG}$: Line polarisation & splitting, quadratic Zeeman regime

• $50 \text{ kG} < |B| < 1\text{ MG} \rightarrow$ Line polarisation & splitting linear Zeeman regime

• $1\text{ kG} < |B| < 50 \text{ kG} \rightarrow$ Line polarisation; field detectable only through spectropolarimetry

See Putney (1997)
• $|B| > 50 \text{ MG}$: Magnetic force \sim Coulomb force; polarisation of the continuum + spectral upheaval

• $1 \text{ MG} < |B| < 50 \text{ MG}$: Line polarisation & splitting, quadratic Zeeman regime

• $50 \text{ kG} < |B| < 1 \text{ MG}$ \rightarrow Line polarisation & splitting linear Zeeman regime

• $1 \text{ kG} < |B| < 50 \text{ kG}$ \rightarrow Line polarisation; field detectable only through spectropolarimetry
* \(|B| > 50 \text{ MG}\): Magnetic force \(\sim\) Coulomb force; polarisation of the continuum + spectral upheaval

* \(1 \text{ MG} < |B| < 50 \text{ MG}\): Line polarisation & splitting, quadratic Zeeman regime

* \(50 \text{ kG} < |B| < 1 \text{ MG}\) \(\rightarrow\) Line polarisation & splitting linear Zeeman regime

* \(1 \text{ kG} < |B| < 50 \text{ kG}\) \(\rightarrow\) Line polarisation; field detectable only through spectropolarimetry
<table>
<thead>
<tr>
<th>n^l m_\ell</th>
<th>n^l' m'_\ell</th>
<th>3 \times 10^6</th>
<th>7 \times 10^6</th>
<th>B(\text{gauss})</th>
<th>1 \times 10^7</th>
<th>2 \times 10^7</th>
<th>5 \times 10^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2p0 4s0</td>
<td>4857.3</td>
<td>4833.9</td>
<td>4805.3</td>
<td>4657.6</td>
<td>4046.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.119</td>
<td>.124</td>
<td>.129</td>
<td>.156</td>
<td>.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p-1 4s0</td>
<td>4824.6</td>
<td>4759.4</td>
<td>4701.2</td>
<td>4468.2</td>
<td>3717.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.337</td>
<td>.343</td>
<td>.347</td>
<td>.368</td>
<td>.148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p1 4s0</td>
<td>4890.7</td>
<td>4912.2</td>
<td>4917.1</td>
<td>4875.1</td>
<td>4498.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.337</td>
<td>.343</td>
<td>.347</td>
<td>.368</td>
<td>.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p0 4d0</td>
<td>4861.2</td>
<td>4851.9</td>
<td>4847.1</td>
<td>4805.7</td>
<td>4608.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.154(+1)</td>
<td>.154(+1)</td>
<td>.154(+1)</td>
<td>.154(+1)</td>
<td>.132(+1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p1 4d1</td>
<td>4859.9</td>
<td>4847.7</td>
<td>4832.8</td>
<td>4754.7</td>
<td>4392.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.117(+1)</td>
<td>.118(+1)</td>
<td>.119(+1)</td>
<td>.120(+1)</td>
<td>.926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p-1 4d-1</td>
<td>4859.9</td>
<td>4847.7</td>
<td>4832.8</td>
<td>4754.7</td>
<td>4392.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.117(+1)</td>
<td>.118(+1)</td>
<td>.119(+1)</td>
<td>.120(+1)</td>
<td>.926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p0 4d1</td>
<td>4826.9</td>
<td>4771.5</td>
<td>4724.8</td>
<td>4547.6</td>
<td>3960.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.117(+1)</td>
<td>.118(+1)</td>
<td>.119(+1)</td>
<td>.120(+1)</td>
<td>.926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p-1 4d0</td>
<td>4828.5</td>
<td>4779.7</td>
<td>4741.1</td>
<td>4640.4</td>
<td>4187.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.151</td>
<td>.150</td>
<td>.149</td>
<td>.139</td>
<td>.775(-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p1 4d2</td>
<td>4825.5</td>
<td>4764.3</td>
<td>4710.7</td>
<td>4499.7</td>
<td>3767.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.234(+1)</td>
<td>.237(+1)</td>
<td>.239(+1)</td>
<td>.241(+1)</td>
<td>.160(+1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p0 4d-1</td>
<td>4826.1</td>
<td>4925.1</td>
<td>4943.0</td>
<td>4969.7</td>
<td>4859.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.117(+1)</td>
<td>.118(+1)</td>
<td>.119(+1)</td>
<td>.120(+1)</td>
<td>.926</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• $|B| > 50$ MG: Magnetic force \sim Coulomb force; polarisation of the continuum + spectral upheaval

• 1 MG $< |B| < 50$ MG: Line polarisation & splitting, quadratic Zeeman regime

• 50 kG $< |B| < 1$ MG \rightarrow Line polarisation & splitting linear Zeeman regime

• 1kG $< |B| < 50$ kG \rightarrow Line polarisation; field detectable only through spectropolarimetry
| | \(|B| > 50 \, \text{MG} \): Magnetic force \(\sim \) Coulomb force; polarisation of the continuum + spectral upheaval
| | \(1 \, \text{MG} < |B| < 50 \, \text{MG} \): Line polarisation & splitting, quadratic Zeeman regime
| | \(50 \, \text{kG} < |B| < 1 \, \text{MG} \rightarrow \): Line polarisation & splitting, linear Zeeman regime
| | \(1 \, \text{kG} < |B| < 50 \, \text{kG} \rightarrow \): Line polarisation; field detectable only through spectropolarimetry
|B| > 50 MG: Magnetic force ~ Coulomb force; polarisation of the continuum + spectral upheaval

1MG < |B| < 50 MG: Line polarisation & splitting, quadratic Zeeman regime

50 kG < |B| < 1MG —> Line polarisation & splitting linear Zeeman regime

1kG < |B| < 50 kG —> Line polarisation; field detectable only through spectropolarimetry

We do not have an instrument that optimally covers at best all these regimes
S, M, L, XL, XXL surveys

- **S** Kemp et al. (1970): first field detection in a WD, followed by various BBCP surveys
- **L** Schmidt & Smith (1995): specpol survey of 170 DA WDs; $\sigma \sim 8.6\, \text{kG}$ (4% detections rate)
- **M** Putney (1997): specpol survey of 46 WDs, $\sigma > 10\, \text{kG}$ (15-20% detection rate)
- **M** Koester et al. (1998): high-res spec survey of 30 stars, (16% detection rate)
- **S** Aznar-Cuadrado (2004) + Jordan et al. (2005): FORS circular specpol of 12+10 stars, $\sigma < 1\, \text{kG}$ (25% + 10% detection rate, respectively)
- **XL** Koester et al. (2009): UVES high-res spec survey of 1000 isolated and WD+dM (1.6% detection rate)
- **S** Landstreet et al. (2012): FORS specpol survey of 8 WDs; $\sigma \sim 1\, \text{kG}$ (12% detection rate). Reassessment of previous surveys
- **M** Kawka & Vennes (2012): FORS specpol survey of 58 cool WDs $\sigma > 2-5\, \text{kG}$ (3.5% detection rate)
- **XXL** Külebi et al. (2009), Kleiman et al (2013), Kepler et al. (2013): spec survey of 20,000 SDSS WD spectra, (5% detection rate)
S, M, L, XL, XXL surveys

- **S** Kemp et al. (1970): first field detection in a WD, followed by various BBCP surveys
- **L** Schmidt & Smith (1995): specpol survey of **170** DA WDs; $\sigma \sim 8.6 \, \text{kG}$ (4% detections rate)
- **M** Putney (1997): specpol survey of **46** WDs, $\sigma > 10 \, \text{kG}$ (15-20% detection rate)
- **M** Koester et al. (1998): high-res spec survey of **30** stars, (16% detection rate)
- **S** Aznar-Cuadrado (2004) + Jordan et al. (2005): FORS circular specpol of **12+10** stars, $\sigma < 1 \, \text{kG}$ (25% + 10% detection rate, respectively)
- **XL** Koester et al. (2009): UVES high-res spec survey of **1000** isolated and WD+dM (1.6% detection rate)
- **S** Landstreet et al. (2012): FORS specpol survey of **8** WDs; $\sigma \sim 1 \, \text{kG}$ (12% detection rate). Reassessment of previous surveys
- **M** Kawka & Vennes (2012): FORS specpol survey of **58** cool WDs $\sigma > 2-5 \, \text{kG}$ (3.5% detection rate)
- **XXL** Külebi et al. (2009), Kleiman et al (2013), Kepler et al. (2013): spec survey of **20,000** SDSS WD spectra, (5% detection rate)
S, M, L, XL, XXL surveys

- **S** Kemp et al. (1970): first field detection in a WD, followed by various BCP surveys
- **L** Schmidt & Smith (1995): specpol survey of 170 DA WDs; $\sigma \sim 8.6\, \text{kG}$ (4% detection rate)
- **M** Putney (1997): specpol survey of 46 WDs, $\sigma > 10\, \text{kG}$ (15-20% detection rate)
- **M** Koester et al. (1998): high-res spec survey of 30 stars, (15% detection rate)
- **S** Aznar-Cuadrado (2004) + Jordan et al. (2005): FORS circular specpol of 12+10 stars, $\sigma < 1\, \text{kG}$ (25% +10% detection rate, respectively)
- **XL** Koester et al. (2009): UVES high-res spec survey of 1000 isolated and WD+dM (1.6% detection rate)
- **S** Landstreet et al. (2012): FORS specpol survey of 8 WDs; $\sigma \sim 1\, \text{kG}$ (12% detection rate). Reassessment of previous surveys
- **M** Kawka & Vennes (2012): FORS specpol survey of 58 cool WDs $\sigma > 2-5\, \text{kG}$ (3.5% detection rate)
- **XXL** Külebi et al. (2009), Kleiman et al (2013), Kepler et al. (2013): spec survey of 20,000 SDSS WD spectra, (5% detection rate)
S, M, L, XL, XXL surveys

- **S** Kemp et al. (1970): first field detection in a WD, followed by various BBCP surveys.
- **L** Schmidt & Smith (1995): specpol survey of 170 DA WDs; $\sigma \sim 8.6$ kG (4% detection rate).
- **M** Putney (1997): specpol survey of 46 WDs, $\sigma > 10$ kG (15-20% detection rate).
- **M** Koester et al. (1998): high-res spec survey of 30 stars, (16% detection rate).
- **S** Aznar-Cuadrado (2004) + Jordan et al. (2005): FORS circular specpol of 12+10 stars, $\sigma < 1$ kG (25% + 10% detection rate, respectively).
- **XL** Koester et al. (2009): UVES high-res spec survey of 1000 isolated and WD+dM (1.6% detection rate).
- **S** Landstreet et al. (2012): FORS specpol survey of 8 WDs; $\sigma \sim 1$ kG (12% detection rate). Reassessment of previous surveys.
- **M** Kawka & Vennes (2012): FORS specpol survey of 58 cool WDs $\sigma > 2$-5 kG (3.5% detection rate).
- **XXL** Külebi et al. (2009), Kleiman et al (2013), Kepler et al. (2013): spec survey of 20,000 SDSS WD spectra, (5% detection rate).
About statistics

- Sample size
- Signal-to-noise ratio
- Bias from the instrument used for the survey
- Re—observations of known or suspected magnetic stars
- Misleading language, e.g., “… 50 WDs have a field strength less than 10 kG …” (when 10 kG is the detection threshold), or “field was detected at 2σ level”
- Morphology and geometry relative to the observer
- Magnetic fields in WDs with featureless spectra (DC) can be detected only if |B| > 50 MG
- Non featureless WDs with field strength |B| > 50G may be not easily recognised/classified
OUR NEW SURVEY

~ 60 WDs observed in low and/or medium and/or high resolution spectro-polarimetric mode using three different instruments

Most of the targets were never observed before with high precision polarimetric techniques (or never observed at all in polarimetric mode)

Roughly magnitude-limited, but certainly not optimised (yet) for unbiased statistics
FORS @ VLT
\[\frac{V}{I} = -4.67 \times 10^{-13} \left(\frac{1}{\lambda^2} \right) \left(\frac{1}{I} \right) \left(\frac{dI}{d\lambda} \right) \langle B_z \rangle \]
Flexures are much more likely to produce spurious detections than hiding a magnetic field.
ESPaDONs @ CHFT
Landstreet et al. (2015)
WD1350-090 MWD
Esp spectra 2017-01, binned to 0.5 Å (blk, red, blu), avg ESO spec, binned 0.2 Å (grn)
The graph shows a histogram of $\sigma_{B_\ast} (G)$ with the number of measurements on the y-axis and $\sigma_{B_\ast} (G)$ on the x-axis. The histogram is shaded and includes bars at intervals of 0 to 2000 G, with a peak concentration in the 500-1000 G range.
• In our high precision (σ ~0.5kG) survey of 60 WDs, we have discovered 1 new magnetic WD, and re-observed a small number of previously known magnetic or suspected magnetic WDs for monitoring purpose.

• Combining our new survey with 20 stars previously observed by Aznar-Cuadrado et al. (2004), Jordan et al. (2007), and Landstreet et al. (2012) we have 80 WDs observed in circular polarisation with very high precision (< 1kG). —> x 4!

...of which:

• 4 WDs have |<Bz>| < 10 kG
• 1 WD has |<Bz>| ~35 kG, and
• 1 has a 100+ MG field (Grw+70 8247)

• **THIS DOES NOT TRANSLATE INTO STATISTICS IN A STRAIGHTFORWARD WAY (e.g., 7.5%)!**

• With the current telescopes it will be very hard to detect any dipolar field weaker than 3 kG.
Pushing the precision to the limits of the current instrumentation has not led to a substantial increase of the incidence of magnetic fields (rather the opposite)

(We cannot push the precision much further down...)

The results of our (and K&V) high-precision spectro-polarimetric survey supports the idea that magnetic WDs are pretty rare objects
MODELLING OF MWDs

- WD 2047+372: younger and simpler (dipolar) field
- WD 2359-434: older and more complex field